A Best-First Probabilistic Shift-Reduce Parser
نویسندگان
چکیده
Recently proposed deterministic classifierbased parsers (Nivre and Scholz, 2004; Sagae and Lavie, 2005; Yamada and Matsumoto, 2003) offer attractive alternatives to generative statistical parsers. Deterministic parsers are fast, efficient, and simple to implement, but generally less accurate than optimal (or nearly optimal) statistical parsers. We present a statistical shift-reduce parser that bridges the gap between deterministic and probabilistic parsers. The parsing model is essentially the same as one previously used for deterministic parsing, but the parser performs a best-first search instead of a greedy search. Using the standard sections of the WSJ corpus of the Penn Treebank for training and testing, our parser has 88.1% precision and 87.8% recall (using automatically assigned part-of-speech tags). Perhaps more interestingly, the parsing model is significantly different from the generative models used by other wellknown accurate parsers, allowing for a simple combination that produces precision and recall of 90.9% and 90.7%, respectively.
منابع مشابه
Studying impressive parameters on the performance of Persian probabilistic context free grammar parser
In linguistics, a tree bank is a parsed text corpus that annotates syntactic or semantic sentence structure. The exploitation of tree bank data has been important ever since the first large-scale tree bank, The Penn Treebank, was published. However, although originating in computational linguistics, the value of tree bank is becoming more widely appreciated in linguistics research as a whole. F...
متن کاملOptimal Incremental Parsing via Best-First Dynamic Programming
We present the first provably optimal polynomial time dynamic programming (DP) algorithm for best-first shift-reduce parsing, which applies the DP idea of Huang and Sagae (2010) to the best-first parser of Sagae and Lavie (2006) in a non-trivial way, reducing the complexity of the latter from exponential to polynomial. We prove the correctness of our algorithm rigorously. Experiments confirm th...
متن کاملEfficient Stacked Dependency Parsing by Forest Reranking
This paper proposes a discriminative forest reranking algorithm for dependency parsing that can be seen as a form of efficient stacked parsing. A dynamic programming shift-reduce parser produces a packed derivation forest which is then scored by a discriminative reranker, using the 1-best tree output by the shift-reduce parser as guide features in addition to third-order graph-based features. T...
متن کاملGLR Parser with Conditional Action Model(CAM)
There are two different approaches in the LR parsing. The first one is the deterministic approach that performs the only one action using the control rules learned without any LR parsing resource. It shows good performance in speed. But it has a disadvantage that it cannot correct the previous mistakes, thus directly affects the parsing result. The second one is the probabilistic LR parsing app...
متن کاملFast and Accurate Shift-Reduce Constituent Parsing
Shift-reduce dependency parsers give comparable accuracies to their chartbased counterparts, yet the best shiftreduce constituent parsers still lag behind the state-of-the-art. One important reason is the existence of unary nodes in phrase structure trees, which leads to different numbers of shift-reduce actions between different outputs for the same input. This turns out to have a large empiri...
متن کامل